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ABSTRACT 
                           We present color image processing methods for the analysis of images of dermatological lesions. 
The focus of this study is on the application of feature extraction and selectionmethods for classification and 
analysis of the tissue composition of skin lesions or ulcers, in terms of granulation (red), fibrin (yellow), necrotic 
(black), callous (white), and mixed tissue composition. The images were analyzed and classified by an expert 
dermatologist into the classes mentioned previously. Indexing of the images was performed based on statistical 
texture features derived from cooccurrence matrices of the red, green, and blue (RGB), hue, saturation,and intensity 
(HSI), L*a*b*, and L*u*v* color components. Feature selection methods were applied using theWrapper algorithm 
with different classifiers. The performance of classification was measured in terms of the percentage of correctly 
classified images and the area under the receiver operating characteristic curve, with values of up to 73.8% and 0.82, 
respectively. 
 
Index Terms—Color image processing, color texture, dermatologicalulcers, feature selection, machine learning, 
pattern recognition,tissue composition 
 
 
 I.INTRODUCTION 
               ULCERATION of the lower leg affects 
about 1% of the population, causing considerable 
morbidity[1]. Ulcers are usually caused by deficit in 
blood circulation and can be associated with arterial 
or venous insufficiency. Other causes are related to 
diabetes, vascular diseases, tumors, infection, and 
certain specific skin conditions. The healing process 
of an ulcer canbe divided into three phases: 
inflammation,tissue formation, and remodeling [2]. 
Inflammation is a protective response of the body, 
characterized by the activation of the immune system 
and redness of the affected tissue. After this step, 
tissue formation begins, with the formation of 
granulation tissue, which is the main component of 
most of capillaries and fibroblasts [3]. 
Finally,remodeling occurs with healing  and 
reepithelialization 
                However, chronic wounds, such as venous 
ulcers, follow a more complex seesaw healing pattern 
[2]. Tissue injury is followed by the formation of a 
provisional matrix of fibrin that facilitates the influx 
of inflammatory and vascular endothelial cells during 
wound healing. Burnand et al. [4] showed that fibrin 

is present in ulcer-bearing skin and postulated that 
this accumulation within the tissue is the result of 
larger quantities of fibrinogen escaping through 
capillary pores, which are enlarged by the raised 
venous pressure. During the healing process, the skin 
can change to a transient phase of necrosis [5]. The 
existence of focal occlusions of arterioles in deep 
dermal plexus, small thrombi, and reduced vascular 
density suggests that necrosis develops as a result of 
vascular insufficiency [5]. In addition, callous is a 
hyperkeratotic lesion with a broad base and relatively 
uniform thickness which has lost its physiological 
function of protection, exacerbating the consequences 
of neuropathy, such as diminished pain perception 
[6]. Callous tissue is tough and hard, and thereby 
increases the already present pressure and contributes 
to more extensive lesions [7]. 
              In dermatologic clinical routine, usually, 
medical professionals base the diagnosis of skin 
lesions mainly on visual assessment of pathological 
regions and evaluation of macroscopic features [8]. 
This fact indicates that correct diagnosis is highly 
dependent on the observer’s experience and visual 
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perception[9]. The appearance of a wound, lesion, or 
ulcer provides important clues that can help with the 
diagnosis, determination of severity, and the 
prognosis of healing [10]. 
                Quantification of the color and texture 
distribution of skin lesionsby image processing 
techniques could assist in the analysis of the 
dynamics of the underlying pathological processes as 
well as the progress of healing and response to 
treatment [9], [11].Inasmuch as automatic 
classification of ulcers is a relevant stage in 
computer-aided decision making [12], evaluation of 
the extractedfeatures in the image processing steps is 
important to determine which features, attributes, or 
measures are more descriptive or relevant than others. 
The major objective of this study is to evaluate 
several techniques of feature or attribute extraction 
and selection to determine which color and texture 
features are more useful in the classification of 
images of dermatological ulcers. This study is an 
expanded and updated version of a recent related 
conference presentation [12]. 
 
II. METHODOLOGY 
A. Database of Images 
                   A database consisting of 172 
dermatologic images has beenprepared to date, 
obtained from outpatients at the University Medical 
Center, School of Medicine of Ribeir˜ao Preto, 
University of S˜ao Paulo, S˜ao Paulo, Brazil. Images 
included in database refer to venous and arterial 
insufficiency and diabetic wounds. The included 
wounds were located in different parts of inferiors 
members, with variable sizes. The skin color 
distribution among the subjects was predominantly 
white and only one lesion was included per patient. 
The age and gender distribution among the patients 
were not available due the patients’ data 
anonymizing. 
                   Approval was obtained from the Medical 
Center Ethics Committee for this research. Images 
were obtained based on a specific protocol that was 
determined after initial tests [13]. All images were 
obtained with the same digital camera (CanonEOS 
5D0, 2 Megapixels), a 50-mm macro lens with a 
polarizing filter, and a circular flash; see Fig. 1 for 
examples of images of various types of ulcers. The 
typical size of the color images is 1747 × 1165 pixels 
with 24 b/pixel. 
              The tissue composition of each lesion was 
classified independently by an expert dermatologist 
(MACF), based on the color composition, as 
granulation (red), fibrin (yellow), necrotic (black), 
hyperkeratotic or callous (white), and mixed tissue. 
The dermatologist was blinded to the results of image 

processing. The 172 images in the database include 
51 images of lesions 
predominantly composed of granulation, 31 images 
of fibrin,three images of necrotic, three images of 
hyperkeratotic or callous, and 84 images of mixed 
tissue. The dermatologist also drew the boundaries of 
the lesions. 
 

 
 
Fig. 1. Examples of images of various types of ulcers. 
(a) Granulation ulcer; 
(b) fibrin ulcer; (c) necrotic ulcer; and (d) mixed-
tissue ulcer. 
 
          A blue cloth was used to create a background 
in a color not expected to be present within the ulcer 
or on the part of the body being imaged, which was 
visible in most of the images. Color patches and 
rulers were included in the images (see Fig. 1) to 
facilitate color normalization and calibration of the 
images. A suite of color image processing, pattern 
analysis, and classification methods is being 
developed to facilitate image analysis. 
B. Feature Extraction and Classification 
                Each image was independently and 
manually segmented into two regions representing 
the lesion and the background by an MACF. For each 
region representing a lesion, in addition to the basic 
RGB color components, six images were generated. 
According to t based on the hue (H) component and 
another was generated based on the saturation (S) 
component [15]. According to theL*u*v* color 
representation [14], [15], an image was generated 
based on the u* component and another was 
generated based on the v* component. Similarly, 
according to the L*a*b* color representation [14], 
[15], an image was generated based on the a* 
component and another was generated based on the 
b* component. 
              Values of the mean, standard deviation, 
skewness, and kurtosis were computed from the 
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histogram of each of the R, G, B, H, S, u*, v*, a*, 
and b* components. Also, the fivemost discriminative 
of the 14 texture features proposed by Haralicket al. 
[16] were derived from an averaged cooccurrence 
matrix (CoM) computed from four CoMs for a 
distance of one pixel at 0◦, 45◦, 90◦, and 135◦. The 
features are homogeneity, contrast,correlation, 
entropy, and local homogeneity, as suggested by 
Conners and Harlow [17], and were computed for 
each of the R, G, B, H, S, u*, v*, a*, and b* 
components. Furthermore, the five texture features 
mentioned earlier were computed from multispectral 
or color cooccurrence matrices (CCMs), obtained 
from the RG, GB, BR, HS, u*v*, and a*b* 
components, using the method proposed by Arvis et 
al. [18]. The method is an extension of the method of 
Haralick et al. [16], and was developed for 
application to color images to take into account the 
correlation existing between the color components, as 
shown in Fig. 2. Thus, a total of 111 features were 
extracted from the R, G, B, H, S, u*, v*, a*, and b* 
components to characterize each color image [12]. 
              In the process of classification among the 
different types of skin ulcers, the extracted features 
should be evaluated to determine, which are more 
relevant to the solution of the problem[19]. The 
existence of correlated attributes in the set of features 
used can dramatically change the precision of certain 
classifiers. On the other hand, some classifiers lose 
precision due to the existence of more attributes than 
the desirable optimal set [20]. Thus, it is important to 
check the suitability and relevance of the available 
features in the context of the present problem [21]. 
The experiments described in this study were 
conducted using the open-source softwareWeka 3.6.4 
[22]. The default values provided in Weka were used 
for all parametersof the feature selection and 
classification methods utilized in this study. Only the 
options for the number of folds in crossvalidation and 
the number of nearest neighbors were varied in the 
experiments. 
              From the algorithms available to perform 
attribute or feature selection, the Wrapper algorithm 
was chosen. The Wrapper algorithm generates 
candidate subsets of attributes and evaluates them by 
using a learning scheme [19]. This process is 
repeated with each candidate set until the stopping 
criterion is reached. Cross validation is used to 
estimate the accuracy of the learning scheme for a 
given set of attributes [19]. Cross validation is a 
sampling method for the analysis of the performance 
of a classifier that randomly divides the samples into 
r mutually exclusive partitions (folds) of 
approximately equal size of n/r samples, where n is 
the total number of available samples. The classifier 
is trained with the r − 1 induced folds of samples and 

the classification rule or methodology so derived is 
tested on the remaining fold. This process is repeated 
r times, so that each fold is used once as the test set. 
In this study, we have used fivefold cross validation 

.            The classifiers chosen to run the Wrapper 
algorithm are the Naive Bayes [23], multilayer 
perceptron (MLP) [24], decision tree [25], and k-
nearest-neighbor (KNN) methods.The naive Bayes 
classifier calculates the probability of a sample 
belonging to each of the predetermined classes, 
assuming that there is independence between the 
attributes that describe the sample [23]. This 
probability value is used to generate a model with a 
decision rule that always provides a response 
indicating the class that has the highest probability 
after application of Bayes theorem . 

              The MLP classifier consists of a set of nodes 
that constitute the input layer, one or more 
intermediate or hidden layers of computational nodes, 
and an output layer [24]. The set of measurements to 
be classified is provided to the input layer and 
propagates forward, through the hidden layers toward 
the output layer, creating a computed value for 
classification. 

             Decision trees employ a strategy of divide-
and-conquer, decomposing a larger problem 
recursively into simpler subproblems [25]. The 
construction of a tree is based on the choice of an 
attribute that will serve as a node to divide the 
samples into subsets according to the attribute value. 
The samples are analyzed for subsets according to the 
value of the respective attributes, and for each subset, 
it is verified if all of the samples belong to the same 
class. If this condition is satisfied, a leaf is created 
that selects the samples for the subset. The 
classification of a new sample starts from the root of 
the tree and proceeds through each decision node 
until arrival at a leaf . The class of the new sample is 
given by the class of the leaf[28]. The J48 
implementation of decision trees was used in this 
study. 

          TheKNNclassifier finds the k nearest neighbors 
of the sample to be classified, typically by using a 
distance metric (usually the Euclidean distance) 
between the attributes of the sample to be classified 
and the attributes of all of the available samples with 
known classification [15]. In this study, the k value 
used for theKNN classifier is 10. 
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Fig. 2. Creation of CCMs for the analysis of texture 

in color images 
 
C. Space Search Algorithms 
                 The Wrapper algorithm needs to have a 
search engine. We used genetic search[29], greedy 
search (hill climbing) [19], and linear forward 
selection search [30]. 
                Genetic search algorithms are implemented 
as a computer simulation in which a population of 
abstract representations of the solution is selected in 
search of better solutions [29]. The evolution usually 
starts from a set of randomly created solutions, and is 
carried through generations. In each generation, the 
adaptation of each solution is evaluated with the 
population; some individuals are selected for the next 
generation, and mutated or recombined to form a new 
population. The new population is then used as the 
input for the next iteration. 
               The hill-climbing search technique, also 
called greedy search or steepest ascent, is an 
algorithm that expands the current node and moves to 
the child node with the highest accuracy, terminating 
when no child node provides improvement over the 
current node [19]. 
            Linear forward selection search takes a 
restricted number of  l  attributes into account. The 
search uses either the initial order of the attributes or 
a ranking that is performed to select the top l 
attributes. The search direction can be forward, or a 
floating forward selection approach could be used, 
and the procedure stops at a precomputed optimal 
size of the subset[30] . 
D. Evaluation of the Results 
               Twelve feature selection tests were 
conducted, using all of the 111 features extracted for 
each image, with the four classifiers and the three 
search algorithms mentioned in Sections II-B and II-
C, respectively. The selected attributes were stored 
and compared to verify which were selected more 
often. 

            We analyzed the frequency of selection of 
each attribute in the twelve tests. An evaluation test 
was conducted with the classifiers used (naive Bayes, 
MLP, KNN, and decision trees) and the attributes 
selected once or more, twice or more, until eight 
times, which was the highest frequency obtained. The 
labeling of the images by the dermatologist was used 
in training and testing of the classifiers. The 
percentage of correctly classified images and the area 
under the receiver operating characteristic (ROC) 
curve were computed for comparative analysis. 
           The ROC curve is obtained by plotting a graph 
of the sensitivity versus (1-specificity). The 
specificity of classification was computed in each 
experiment as the ratio of true positives to the 
number of positive samples. The sensitivity of 
classification is the ratio of the true negatives to the 
number of negative samples. Then, the area under the 
curve (AUC) is calculated. A large AUC indicates 
good performance in classification. In this 
study, due to the existence of five classes of ulcers, 
ROC analysis was performed in five steps, treating 
each class as positive and the remaining four classes 
as negative. A weighted average was then computed 
using the five AUC values so obtained. 
 
III. RESULTS AND DISCUSSIONS 
               The frequency of selection of each feature is 
shown in Table I,separated by color space. The 
highest frequency of selection obtained in the 
experiments conductedwas 8. Only 22 of the 111 
features were selected with one-half of the highest 
frequency or more often; among these features, 18 
were derived from CCMs. Furthermore, only features 
from the L*a*b* and L*u*v* color spaces were 
selected more than four times, and all of them were 
features derived from CCMs.  
              Classification experiments were performed 
with all sets of attributes selected once to eight times. 
Fig. 3 shows the percentage of correctly classified 
images for each threshold on the frequency of 
selection of the attributes; the abscissa shows the 
number of features in each set. Fig. 4 shows the 
weighted average AUC for each experiment as 
described ealier. 
              The best classification with the naive Bayes 
classifier was obtained with only two features that 
were selected eight times each, with the correct 
classification rate of 73.3%. The two attributes 
selected eight times are the contrast between the 
components u*and v*, and the entropy between the 
components a* and b*. 
           When all of the 111 features were used, the 
MLP classifier provided the best classification 
accuracy of 70.4%, and AUC =0.75. Table II shows 
the confusion matrix for this case. We can observe 
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high performance in the classification of the fibrin 
and mixed categories, with accuracy up to 76%. 
          The best classification with the MLP was 
obtained using four attributes, which were the 
attributes selected six or more times, with an 
accuracy of 73.8% and AUC of 0.82. This was the 
highest classification accuracy obtained over all of 
the experiments conducted. Out of the four attributes 
used, three are from the L*a*b* color space and one 
is from the L*u*v* color space; all are features 
computed using CCMs. Table III shows the 
confusion matrix obtained in this experiment, which 
demonstrates good performance with the fibrin and 
mixed classes, with accuracy up to 80%. 
               The KNN and decision tree classifiers 
provided the best performance using eight 
features,which were the attributes selected five or 
more times, with the correct classification rate of 
73.6% and 71.5%, and AUC of 0.87 and 0.79, 
respectively. Out of the eight attributes that were 
selected five times or more, five are from the L*a*b* 
color space and three are from the L*u*v* color 
space; six of these features are based on CCMs and 
two 
are texture features of individual components. 
             We can observe that in every case of highest 
performance of each classifier, only features from the 
L*a*b* and the L*u*v* color spaces were used, and 
most of them are features extracted from CCMs. 
Furthermore, these features were selected more often 
than features extracted from individual color 
components 
The L*u*v* representation provides a uniform color 
space inwhich color differences correspond to 
differences as perceived by the human eye. The 
L*a*b* representation includes nonlinear 
transformations to emulate logarithmic characteristics 
of the human eye. Among the four color spaces used 
in this study, 
the L*a*b* and L*u*v* spaces are designed to 
provide representations that facilitate analysis of 
color in the closest manner possible to human visual 
perception. In this study, results 
of classification of ulcers based on texture analysis 
have been evaluated with reference to the results of 
visual analysis of the images by an MACF. The better 
performance of the texture features derived from the 
L*a*b* and L*u*v* spaces, as compared with the 
same derived from the RGB and HSI spaces, 
confirms that the L*a*b* and L*u*v* representations 
agree well with the human perceptual characteristics. 
Furthermore, the improved performance of the CCM 
features derived from the L*a*b* and L*u*v* spaces 
indicates that the correlation existing between the 
multiple channels of color representation carries 
useful information for texture analysis. 

               In summary, we can state that, based on the 
experiments conducted in this study, the best 
approach to the classification of color images of 
dermatological ulcers is the MLP classifier with the 
following features: homogeneity between the 
components a* and b*, contrast between the 
components a* and b*, entropy between a* and b*, 
and contrast between the components u*and v*.  
         Limitations exist in this study due to the small 
size of the database used, especially in the callous 
and necrotic tissue categories. Difficulties were 
encountered in applying the imaging protocol in a 
consistent manner. The images were acquired in a 
clinical environment and not in a research laboratory. 
In some cases, considerations related to the patient’s 
mobility affected positioning and imaging of the 
ulcer. Such considerations also affected the distance 
and orientation of the camera, illumination of the 
ulcer, and composition of the image. Procedures need 
to be developed for color correction and 
normalization. It would be desirable to include 
procedures for comparative analysis of an ulcer 
region with reference to the color characteristics of 
the  
surrounding normal skin of the patient. Further study 
is desired with a larger database of images, including 
longitudinal series of images of the same patients 
under treatment. Clinical interpretation of images of 
dermatological ulcers is based on visual analysis of 
the tissue composition as indicated by their color 
characteristics. This, however, is a subjective or 
qualitative approach that is affected by interobserver 
and in traobserver variability. Estimation of the 
fractional composition of an ulcer in terms of tissue 
types, such as granulation and fibrin, is nearly 
impossible via visual analysis. Analysis of the 
reliability of the labeling of ulcers by a dermatologist 
is beyond of the scope of the present study. We 
expect objective analysis of images of ulcers, as 
proposed in this study, to overcome some of the 
difficulties associated with visual analysis. 

TABLE I FREQUENCY OF SELECTION OF 
EACH ATTRIBUTE FOR THE HSI, L*A*B*, 

L*U*V*, AND RGB COLOR SPACES 
 
 HIS L*a*b* L*u*v* RGB 
Not 
selec
ted 

Mean in 
S 

Contrast 
in b*; 
Skewnes
s in b*; 
Kurtosis 
in b* 

Correlati
on in v* 

Homoge
neity in 
R; 
Homoge
neity in 
G; 
Local 
homogen
eity in 
G; 
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Contrast 
in B; 
Correlati
on in B; 
Local 
homogen
eity 
between 
R and G; 
Entropy 
between 
G and B 

Once Homoge
neity 
between 
H and S; 
Homoge
neity in 
H; 
Homoge
neity in 
S; 
Local 
homogen
eity in S; 
Kurtosis 
in S; 
Mean in 
H 

Correlati
on 
between 
a* and 
b*; 
Contrast 
in a*; 
Correlati
on in a*; 
Local 
homogen
eity in 
b*; 
Skewnes
s in a*; 
Mean in 
b* 

Correlati
on in u*; 
Entropy 
in u*; 
Local 
homogen
eity in 
v*; 
Mean in 
u*; 
Kurtosis 
in u*; 
Skewnes
s in v*; 
Kurtosis 
in v* 

Entropy 
in G; 
Entropy 
in B; 
Local 
homogen
eity in B; 
Homoge
neity 
between  
R and B; 
Contrast 
between 
R and B; 
Local 
homogen
eity 
between 
G and B; 
Mean in 
G; 
Kurtosis 
in G; 
Mean in 
B 

Twic
e 

Contrast 
in H; 
Correlati
on in H; 
Entropy 
in H; 
Local 
homogen
eity in 
H; 
Entropy 
in S; 
Standard 
deviation 
in S; 
Kurtosis 
in H; 
 

Local 
homogen
eity in 
a*; 
Standard 
deviation 
in a*; 
Kurtosis 
in a*; 
Standard 
deviation 
in b* 
 

Correlati
on 
between 
u* and 
v*; 
Entropy 
between 
u* and 
v*; 
Homoge
neity in 
u*; 
Contrast 
in u*; 
Local 
homogen
eity in 
u*; 
Contrast 

Contrast 
in R; 
Correlati
on in R; 
Homoge
neity in 
B; 
Homoge
neity 
between 
R and G; 
Entropy 
between 
R and G; 
Entropy 
between 
R and B; 
Homoge
neity 

in v*; 
Standard 
deviation 
in u* 

between 
G and B; 
Standard 
deviation 
in R; 
Kurtosis 
in R; 
Skewnes
s in B; 
Kurtosis 
in B 

Thre
e 
times 

Contrast 
between 
H and S; 
Correlati
on 
between 
H and S; 
Entropy 
between 
H and S; 
Contrast 
in S; 
Correlati
on in S; 
Skewnes
s in S; 
Standard 
deviation 
in H; 
Skewnes
s in H 

Entropy 
in a*; 
Correlati
on in b* 

Mean in 
v*; 
Standard 
deviation 
in v* 

Correlati
on in R; 
Contrast 
in G; 
Correlati
on in G; 
Correlati
on 
between 
R and B; 
Local 
homogen
eity 
between  
R and B; 
Contrast 
between 
G and B; 
Skewnes
s in R; 
Skewnes
s in G 

Four 
times 

Local 
homogen
eity 
between 
H and S 

Homoge
neity in 
b*; 
Entropy 
in b*; 
Mean in 
b* 

Local 
homogen
eity 
between 
u* an v*; 
Homoge
neity in 
v*; 
Skewnes
s in u* 

Local 
homogen
eity in R; 
Contrast 
between 
R and G; 
Correlati
on 
between 
R and G; 
Correlati
on 
between 
G and B; 
Mean in 
R 
 

Five 
times 

None Local 
homogen
eity 
between 
a* and 
b*; 

Homoge
neity 
between 
u* and 
v*; 
Entropy 

None 
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Homoge
neity in 
a* 

in v* 

Six 
times 

None Contrast 
between 
a* and 
b* 

None None 

Seve
n 
times 

None Homoge
neity 
between 
a* and 
b* 

None None 

Eight 
times 

None Entropy 
between 
a* and 
b* 

Contrast 
between 
u* and 
v* 

None 

 
 

 
 
Fig. 3. Percentage of correctly classified images with 
each classifier using different thresholds on the 
frequency of selection of the attributes. The labels on 
the horizontal axis indicate the numbers of features in 
the various sets of features used, starting with all of 
the 111 features computed, the features selected once 
(99), twice (71), and so on to eight times (2). 
 

 
Fig. 4. Weighted average AUC for each classifier 
using different thresholds on the frequency of 
selection of the attributes. The labels on the 
horizontal axis indicate the numbers of features in the 

various sets of features used, starting with all of the 
111 features computed, the features selected once 
(99), twice(71), and so on to eight times (2). 

TABLE II CONFUSION MATRIX OF 
CLASSIFICATION USING ALL OF THE 111 
EXTRACTED FEAT URES AND THE MLP 

 
Real/ 
MLP 

Granul
ation 

Fib
rin 

Necr
otic 

Call
ous 

Mix
ed 

To
tal 

Granul
ation 

31 3 0 0 17 51 

Fibrin 1 24 0 0 6 31 
Necroti
c 

0 0 0 0 3 3 

Callous 0 0 0 2 1 3 
Mixed 14 2 2 2 64 84 
The table shows, in each row, the real image class, 
and in each column, the MLP classification. 
 
IV. CONCLUSION 
                  The evaluation of tissue composition 
provides key informationfor monitoring the response 
to treatment of patients with chronic ulcers. 
Quantitative measures characterizing tissue 
composition can make significant contributions to the 
evaluation of the healing process. In this study, we 
have demonstrated the potential use of methods of 
digital image processing and pattern recognition 
based on artificial intelligence to facilitate the 
characterization of tissue composition of skin ulcers. 
Statistical measures derived from CCMs of the 
L*a*b* and L*u*v* color components provided 
better classification performance than the same 
measures derived from the the RGB and HSI 
components. Out of the four classifiers tested, the 
MLP provided the best overall performance.We 
believe that objective analysis of color images of skin 
ulcers using the proposed methods can overcome 
some of the limitations of visual analysis and lead to 
the development of improved protocols for the 
treatment and monitoring of chronic dermatological 
lesions. Furthermore, such approaches can assist in 
the development of optimized and personalized 
therapy for each patient. 
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